Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
PeerJ Comput Sci ; 10: e1823, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660214

RESUMO

The measurement of Functional Reach Test (FRT) is a widely used assessment tool in various fields, including physical therapy, rehabilitation, and geriatrics. This test evaluates a person's balance, mobility, and functional ability to reach forward while maintaining stability. Recently, there has been a growing interest in utilizing sensor-based systems to objectively and accurately measure FRT results. This systematic review was performed in various scientific databases or publishers, including PubMed Central, IEEE Explore, Elsevier, Springer, the Multidisciplinary Digital Publishing Institute (MDPI), and the Association for Computing Machinery (ACM), and considered studies published between January 2017 and October 2022, related to methods for the automation of the measurement of the Functional Reach Test variables and results with sensors. Camera-based devices and motion-based sensors are used for Functional Reach Tests, with statistical models extracting meaningful information. Sensor-based systems offer several advantages over traditional manual measurement techniques, as they can provide objective and precise measurements of the reach distance, quantify postural sway, and capture additional parameters related to the movement.

2.
Data Brief ; 52: 109867, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38146301

RESUMO

This paper presents a dataset related to the performance of the Ten Meter Walking Test, a test to allow locomotor capacity in different research and clinical settings. One of the most important parameters to measure is the gait speed during a path of ten meters. The data available in this dataset consists of accelerometer, magnetometer, and gyroscope data acquired with a mobile device in a waistband. The experiments were performed two times by 109 individuals (30 males and 79 females) in different senior residences in the Fundão municipality (Portugal). The dataset includes 208 samples because the sensors reported some failures. The acquisition of the sensors data allows the creation of a technological method for the automatic measurement of features related to the Ten Meter Walk Test, promoting patient independence in measuring their physical health status.

4.
Heliyon ; 9(6): e16599, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37274667

RESUMO

Physical issues started to receive more attention due to the sedentary lifestyle prevalent in modern culture. The Ten Meter Walk Test allows measuring the person's capacity to walk along 10 m and analyzing the advancement of various medical procedures for ailments, including stroke. This systematic review is related to the use of mobile or wearable devices to measure physical parameters while administering the Ten Meter Walk Test for the analysis of the performance of the test. We applied the PRISMA methodology for searching the papers related to the Ten Meter Walk Test. Natural Language Processing (NLP) algorithms were used to automate the screening process. Various papers published in two decades from multiple scientific databases, including IEEE Xplore, Elsevier, Springer, EMBASE, SCOPUS, Multidisciplinary Digital Publishing Institute (MDPI), and PubMed Central were analyzed, focusing on various diseases, devices, features, and methods. The study reveals that chronometer and accelerometer sensors measuring spatiotemporal features are the most pertinent in the Gait characterization of most diseases. Likewise, all studies emphasized the close relation between the quality of the sensor's data obtained and the system's ultimate accuracy. In other words, calibration procedures are needed because of the body part where the sensor is worn and the type of sensor. In addition, using ambient sensors providing kinematic and kinetic features in conjunction with wearable sensors and consistently acquiring walking signals can enhance the system's performance. The most common weaknesses in the analyzed studies are the sample size and the unavailability of continuous monitoring devices for measuring the Ten Meter Walk Test.

5.
BMC Res Notes ; 16(1): 64, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37106414

RESUMO

This special issue focuses on the importance of advancing research techniques for managing and analyzing data in today's data-rich landscape. In this editorial, we set the context and invite contributions for a BMC Collection of articles titled 'Advancing methods in data capture, integration, classification and liberation'. The collection emphasizes the need for efficient ways to standardize, cleanse, integrate, enrich, and liberate data, highlighting recent advancements in research methods and industrial technologies that facilitate this. We invite researchers to submit their best work to the collection and to showcase the latest advancements and additions to research techniques.


Assuntos
Big Data , Projetos de Pesquisa , Indústrias
7.
Heliyon ; 9(2): e13601, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36852052

RESUMO

The prevalence of cardiovascular diseases is increasing around the world. However, the technology is evolving and can be monitored with low-cost sensors anywhere at any time. This subject is being researched, and different methods can automatically identify these diseases, helping patients and healthcare professionals with the treatments. This paper presents a systematic review of disease identification, classification, and recognition with ECG sensors. The review was focused on studies published between 2017 and 2022 in different scientific databases, including PubMed Central, Springer, Elsevier, Multidisciplinary Digital Publishing Institute (MDPI), IEEE Xplore, and Frontiers. It results in the quantitative and qualitative analysis of 103 scientific papers. The study demonstrated that different datasets are available online with data related to various diseases. Several ML/DP-based models were identified in the research, where Convolutional Neural Network and Support Vector Machine were the most applied algorithms. This review can allow us to identify the techniques that can be used in a system that promotes the patient's autonomy.

8.
Data Brief ; 46: 108874, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36660441

RESUMO

It is increasingly possible to acquire Electrocardiographic data with featured low-cost devices. The proposed dataset will help map different signals for various diseases related to Electrocardiography data. The dataset presented in this paper is related to the acquisition of electrocardiography data during the standing up and seated positions. The data was collected from 219 individuals (112 men, 106 women, and one other) in different environments, but they are in the Covilhã municipality. The dataset includes the 219 recordings and corresponds to the sensors' recordings of a 30 s sitting and a 30 s standing test, which checks to approximately 1 min for each one. This dataset includes 3.7 h (approximately) of recordings for further analysis with data processing techniques and machine learning methods. It will be helpful for the complementary creation of a robust method for identifying the characteristics of individuals related to Electrocardiography signals.

10.
J Med Internet Res ; 24(11): e36553, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36331530

RESUMO

BACKGROUND: Ambient assisted living (AAL) is a common name for various artificial intelligence (AI)-infused applications and platforms that support their users in need in multiple activities, from health to daily living. These systems use different approaches to learn about their users and make automated decisions, known as AI models, for personalizing their services and increasing outcomes. Given the numerous systems developed and deployed for people with different needs, health conditions, and dispositions toward the technology, it is critical to obtain clear and comprehensive insights concerning AI models used, along with their domains, technology, and concerns, to identify promising directions for future work. OBJECTIVE: This study aimed to provide a scoping review of the literature on AI models in AAL. In particular, we analyzed specific AI models used in AАL systems, the target domains of the models, the technology using the models, and the major concerns from the end-user perspective. Our goal was to consolidate research on this topic and inform end users, health care professionals and providers, researchers, and practitioners in developing, deploying, and evaluating future intelligent AAL systems. METHODS: This study was conducted as a scoping review to identify, analyze, and extract the relevant literature. It used a natural language processing toolkit to retrieve the article corpus for an efficient and comprehensive automated literature search. Relevant articles were then extracted from the corpus and analyzed manually. This review included 5 digital libraries: IEEE, PubMed, Springer, Elsevier, and MDPI. RESULTS: We included a total of 108 articles. The annual distribution of relevant articles showed a growing trend for all categories from January 2010 to July 2022. The AI models mainly used unsupervised and semisupervised approaches. The leading models are deep learning, natural language processing, instance-based learning, and clustering. Activity assistance and recognition were the most common target domains of the models. Ambient sensing, mobile technology, and robotic devices mainly implemented the models. Older adults were the primary beneficiaries, followed by patients and frail persons of various ages. Availability was a top beneficiary concern. CONCLUSIONS: This study presents the analytical evidence of AI models in AAL and their domains, technologies, beneficiaries, and concerns. Future research on intelligent AAL should involve health care professionals and caregivers as designers and users, comply with health-related regulations, improve transparency and privacy, integrate with health care technological infrastructure, explain their decisions to the users, and establish evaluation metrics and design guidelines. TRIAL REGISTRATION: PROSPERO (International Prospective Register of Systematic Reviews) CRD42022347590; https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022347590.


Assuntos
Inteligência Ambiental , Inteligência Artificial , Humanos , Idoso , Revisões Sistemáticas como Assunto , Tecnologia , Privacidade
11.
Sensors (Basel) ; 22(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36080901

RESUMO

Nowadays, individuals have very stressful lifestyles, affecting their nutritional habits. In the early stages of life, teenagers begin to exhibit bad habits and inadequate nutrition. Likewise, other people with dementia, Alzheimer's disease, or other conditions may not take food or medicine regularly. Therefore, the ability to monitor could be beneficial for them and for the doctors that can analyze the patterns of eating habits and their correlation with overall health. Many sensors help accurately detect food intake episodes, including electrogastrography, cameras, microphones, and inertial sensors. Accurate detection may provide better control to enable healthy nutrition habits. This paper presents a systematic review of the use of technology for food intake detection, focusing on the different sensors and methodologies used. The search was performed with a Natural Language Processing (NLP) framework that helps screen irrelevant studies while following the PRISMA methodology. It automatically searched and filtered the research studies in different databases, including PubMed, Springer, ACM, IEEE Xplore, MDPI, and Elsevier. Then, the manual analysis selected 30 papers based on the results of the framework for further analysis, which support the interest in using sensors for food intake detection and nutrition assessment. The mainly used sensors are cameras, inertial, and acoustic sensors that handle the recognition of food intake episodes with artificial intelligence techniques. This research identifies the most used sensors and data processing methodologies to detect food intake.


Assuntos
Inteligência Artificial , Avaliação Nutricional , Adolescente , Ingestão de Alimentos , Comportamento Alimentar , Alimentos , Humanos
12.
Sensors (Basel) ; 22(9)2022 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-35591272

RESUMO

Rehabilitation aims to increase the independence and physical function after injury, surgery, or other trauma, so that patients can recover to their previous ability as much as possible. To be able to measure the degree of recovery and impact of the treatment, various functional performance tests are used. The Eight Hop Test is a hop exercise that is directly linked to the rehabilitation of people suffering from tendon and ligament injuries on the lower limb. This paper presents a systematic review on the use of sensors for measuring functional movements during the execution of the Eight Hop Test, focusing primarily on the use of sensors, related diseases, and different methods implemented. Firstly, an automated search was performed on the publication databases: PubMed, Springer, ACM, IEEE Xplore, MDPI, and Elsevier. Secondly, the publications related to the Eight-Hop Test and sensors were filtered according to several search criteria and 15 papers were finally selected to be analyzed in detail. Our analysis found that the Eight Hop Test measurements can be performed with motion, force, and imaging sensors.


Assuntos
Lesões do Ligamento Cruzado Anterior , Teste de Esforço , Exercício Físico , Teste de Esforço/métodos , Humanos , Extremidade Inferior , Movimento , Desempenho Físico Funcional
13.
Diagnostics (Basel) ; 12(4)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35453985

RESUMO

Glaucoma is a chronic optic neuropathy characterized by irreversible damage to the retinal nerve fiber layer (RNFL), resulting in changes in the visual field (VC). Glaucoma screening is performed through a complete ophthalmological examination, using images of the optic papilla obtained in vivo for the evaluation of glaucomatous characteristics, eye pressure, and visual field. Identifying the glaucomatous papilla is quite important, as optical papillary images are considered the gold standard for tracking. Therefore, this article presents a review of the diagnostic methods used to identify the glaucomatous papilla through technology over the last five years. Based on the analyzed works, the current state-of-the-art methods are identified, the current challenges are analyzed, and the shortcomings of these methods are investigated, especially from the point of view of automation and independence in performing these measurements. Finally, the topics for future work and the challenges that need to be solved are proposed.

14.
Sci Data ; 9(1): 105, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35338161

RESUMO

The dataset presented in this paper presents a dataset related to three motionless activities, including driving, watching TV, and sleeping. During these activities, the mobile device may be positioned in different locations, including the pants pockets, in a wristband, over the bedside table, on a table, inside the car, or on other furniture, for the acquisition of accelerometer, magnetometer, gyroscope, GPS, and microphone data. The data was collected by 25 individuals (15 men and 10 women) in different environments in Covilhã and Fundão municipalities (Portugal). The dataset includes the sensors' captures related to a minimum of 2000 captures for each motionless activity, which corresponds to 2.8 h (approximately) for each one. This dataset includes 8.4 h (approximately) of captures for further analysis with data processing techniques, and machine learning methods. It will be useful for the complementary creation of a robust method for the identification of these type of activities.


Assuntos
Atividades Cotidianas , Aprendizado de Máquina , Acelerometria , Condução de Veículo , Humanos , Movimento , Portugal
15.
Sensors (Basel) ; 22(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35214498

RESUMO

Large-scale labeled datasets are generally necessary for successfully training a deep neural network in the computer vision domain. In order to avoid the costly and tedious work of manually annotating image datasets, self-supervised learning methods have been proposed to learn general visual features automatically. In this paper, we first focus on image colorization with generative adversarial networks (GANs) because of their ability to generate the most realistic colorization results. Then, via transfer learning, we use this as a proxy task for visual understanding. Particularly, we propose to use conditional GANs (cGANs) for image colorization and transfer the gained knowledge to two other downstream tasks, namely, multilabel image classification and semantic segmentation. This is the first time that GANs have been used for self-supervised feature learning through image colorization. Through extensive experiments with the COCO and Pascal datasets, we show an increase of 5% for the classification task and 2.5% for the segmentation task. This demonstrates that image colorization with conditional GANs can boost other downstream tasks' performance without the need for manual annotation.


Assuntos
Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Computadores , Processamento de Imagem Assistida por Computador/métodos , Semântica , Visão Ocular
16.
J Imaging ; 8(2)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35200722

RESUMO

Artificial intelligence techniques are now being applied in different medical solutions ranging from disease screening to activity recognition and computer-aided diagnosis. The combination of computer science methods and medical knowledge facilitates and improves the accuracy of the different processes and tools. Inspired by these advances, this paper performs a literature review focused on state-of-the-art glaucoma screening, segmentation, and classification based on images of the papilla and excavation using deep learning techniques. These techniques have been shown to have high sensitivity and specificity in glaucoma screening based on papilla and excavation images. The automatic segmentation of the contours of the optic disc and the excavation then allows the identification and assessment of the glaucomatous disease's progression. As a result, we verified whether deep learning techniques may be helpful in performing accurate and low-cost measurements related to glaucoma, which may promote patient empowerment and help medical doctors better monitor patients.

17.
Sensors (Basel) ; 22(2)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35062542

RESUMO

In the pandemic time, the monitoring of the progression of some diseases is affected and rehabilitation is more complicated. Remote monitoring may help solve this problem using mobile devices that embed low-cost sensors, which can help measure different physical parameters. Many tests can be applied remotely, one of which is the six-minute walk test (6MWT). The 6MWT is a sub-maximal exercise test that assesses aerobic capacity and endurance, allowing early detection of emerging medical conditions with changes. This paper presents a systematic review of the use of sensors to measure the different physical parameters during the performance of 6MWT, focusing on various diseases, sensors, and implemented methodologies. It was performed with the PRISMA methodology, where the search was conducted in different databases, including IEEE Xplore, ACM Digital Library, ScienceDirect, and PubMed Central. After filtering the papers related to 6MWT and sensors, we selected 31 papers that were analyzed in more detail. Our analysis discovered that the measurements of 6MWT are primarily performed with inertial and magnetic sensors. Likewise, most research studies related to this test focus on multiple sclerosis and pulmonary diseases.


Assuntos
Teste de Esforço , Caminhada , Teste de Caminhada
18.
Sensors (Basel) ; 21(21)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34770292

RESUMO

Medicine is heading towards personalized care based on individual situations and conditions. With smartphones and increasingly miniaturized wearable devices, the sensors available on these devices can perform long-term continuous monitoring of several user health-related parameters, making them a powerful tool for a new medicine approach for these patients. Our proposed system, described in this article, aims to develop innovative solutions based on artificial intelligence techniques to empower patients with cardiovascular disease. These solutions will realize a novel 5P (Predictive, Preventive, Participatory, Personalized, and Precision) medicine approach by providing patients with personalized plans for treatment and increasing their ability for self-monitoring. Such capabilities will be derived by learning algorithms from physiological data and behavioral information, collected using wearables and smart devices worn by patients with health conditions. Further, developing an innovative system of smart algorithms will also focus on providing monitoring techniques, predicting extreme events, generating alarms with varying health parameters, and offering opportunities to maintain active engagement of patients in the healthcare process by promoting the adoption of healthy behaviors and well-being outcomes. The multiple features of this future system will increase the quality of life for cardiovascular diseases patients and provide seamless contact with a healthcare professional.


Assuntos
Inteligência Artificial , Dispositivos Eletrônicos Vestíveis , Atenção à Saúde , Humanos , Qualidade de Vida , Smartphone
19.
Sensors (Basel) ; 21(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34502653

RESUMO

Healthcare treatments might benefit from advances in artificial intelligence and technological equipment such as smartphones and smartwatches. The presence of cameras in these devices with increasingly robust and precise pattern recognition techniques can facilitate the estimation of the wound area and other telemedicine measurements. Currently, telemedicine is vital to the maintenance of the quality of the treatments remotely. This study proposes a method for measuring the wound area with mobile devices. The proposed approach relies on a multi-step process consisting of image capture, conversion to grayscale, blurring, application of a threshold with segmentation, identification of the wound part, dilation and erosion of the detected wound section, identification of accurate data related to the image, and measurement of the wound area. The proposed method was implemented with the OpenCV framework. Thus, it is a solution for healthcare systems by which to investigate and treat people with skin-related diseases. The proof-of-concept was performed with a static dataset of camera images on a desktop computer. After we validated the approach's feasibility, we implemented the method in a mobile application that allows for communication between patients, caregivers, and healthcare professionals.


Assuntos
Aplicativos Móveis , Telemedicina , Inteligência Artificial , Atenção à Saúde , Humanos , Smartphone
20.
Artigo em Inglês | MEDLINE | ID: mdl-34300112

RESUMO

Connected health is expected to introduce an improvement in providing healthcare and doctor-patient communication while at the same time reducing cost. Connected health would introduce an even more significant gap between healthcare quality for urban areas with physical proximity and better communication to providers and the portion of rural areas with numerous connectivity issues. We identify these challenges using user scenarios and propose LoRa based architecture for addressing these challenges. We focus on the energy management of battery-powered, affordable IoT devices for long-term operation, providing important information about the care receivers' well-being. Using an external ultra-low-power timer, we extended the battery life in the order of tens of times, compared to relying on low power modes of the microcontroller.


Assuntos
Atenção à Saúde , População Rural , Comunicação , Instalações de Saúde , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...